魏佳男 1,2刘虎林 2陈萍 2,3,*李阳 4[ ... ]赵卫 2,3
作者单位
摘要
1 中国科学院大学,北京 100049
2 中国科学院西安光学精密机械研究所 超快诊断技术重点实验室,西安 710119
3 山西大学 极端光学协同创新中心,太原 030006
4 西北核技术研究所 强脉冲辐射环境模拟与效应国家重点实验室,西安 710024
5 装备发展部某中心,北京 100034
结合理论分析与实验测试,研究了在可见光脉冲输入条件下频率以及第二片微通道板与阳极之间电势差对微通道板光电倍增管动态范围的影响。研究结果表明:随着信号光脉冲频率的增大,微通道板壁面电荷补充不充分致使阳极输出偏离线性,并逐渐趋于饱和。当输入可见光脉冲宽度为50 ns,频率为500 Hz时,阳极的最大线性输出达到2 V(即40 mA);当输入光频率增加到1 000 Hz,阳极输出在1 V(即20 mA)时线性偏离程度达到10%以上;当输入光频率增加到5 000 Hz,阳极输出在0.3 V(即6 mA)时线性偏离程度达到约15%。随着第二片微通道板与阳极之间电势差的增大,阳极最大线性输出电压呈现波动性变化而非与其呈线性关系。当第二片微通道板与阳极之间的电势差在200 V左右时,阳极线性输出电压达到峰值,随着电势差不断增大,阳极线性输出电压开始出现波动,在电势差为500 V左右时达到第二个峰值,这主要是由于极板间电场强度与空间电荷效应共同作用的结果。该研究可为提升微通道板光电倍增管的动态范围提供指导,便于其应用于强辐射脉冲测量、激光通信等领域。
微通道板型光电倍增管 动态范围 输入光脉冲频率 微通道板-阳极电压 线性偏离 Microchannel plate photomultiplier tube Dynamic range Input light pulse frequency Microchannel plate-anode voltage Linear deviation 
光子学报
2024, 53(2): 0204001
赵伟 1,2,*何俊 1,2侯森林 1,2邓琥 1,2[ ... ]赵平 3
作者单位
摘要
1 西南科技大学 a.信息工程学院
2 b.极端物质特性实验室,四川绵阳 621010
3 妙仁堂医疗服务有限公司,四川绵阳 621050
确定中药品种是确保中药材质量的第一关。为探索中草药品种的快速鉴别方法,本文应用太赫兹光谱技术结合模式识别方法对 6种中草药进行分类鉴别。采集了白附片、大黄、党参、陈皮、麦冬、天麻等 6种常用中草药,共得到 420组太赫兹光谱数据,在 0.2~1.5 THz波段分别采用支持向量机 (SVM)、主成分分析 (PCA)和支持向量机相结合、线性判别分析(LDA)结合支持向量机等方法对 6种中药材进行了定性鉴别分析。结果表明,太赫兹光谱数据结合线性判别分析和支持向量机建立的 LDA-SVM中草药品种识别模型最优,模型准确率达 100%,对未知样本的鉴别准确率达 98.41%。本文的 LDA-SVM模型具有较好的鉴别能力,能快速准确地鉴别出中药材的品种,为中草药的质量控制提供了又一鉴别手段。
太赫兹光谱 模式识别 定性鉴别 中草药 terahertz spectrum pattern recognition qualitative identification Chinese herbal medicine 
太赫兹科学与电子信息学报
2023, 21(5): 586
作者单位
摘要
南京航空航天大学 自动化学院,江苏 南京 211100
针对红外与可见光图像难以提取特征点实现配准的问题,提出一种基于边缘结构特征的红外与可见光图像配准算法。首先通过优化的显著性算法增强红外图像的结构特征;其次利用相位一致性提取红外和可见光图像的稳定边缘结构;然后提取边缘结构的ORB(oriented FAST and rotated BRIEF)特征点;最后结合KNN(K-nearest neighbor)算法和余弦相似度对匹配特征点进行筛选,并应用RANSAC(random sample consensus)算法进行提纯。实验表明,该算法能够克服灰度差异的影响,具有较高的配准精度和效率,有助于实现红外与可见光图像的配准。
显著性检测 相位一致性 特征提取 图像配准 saliency detection, phase consistency, feature ext 
红外技术
2023, 45(8): 858
Author Affiliations
Abstract
1 School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710000, Shaanxi, China.
2 School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.
3 School of Computer Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau, China.
4 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, Shaanxi, China.
Manganese dioxide (MnO2) is a widely used and well-studied 3-dimensional (3D) transition metal oxide, which has advantages in ultrafast optics due to large specific surface area, narrow bandgap, multiple pores, superior electron transfer capability, and a wide range of light absorption. However, few studies have considered its excellent performance in ultrafast photonics. γ-MnO2 photonics devices were fabricated based on a special dual-core, pair-hole fiber (DCPHF) carrier and applied in ultrafast optics fields for the first time. The results show that the soliton molecule with tunable temporal separation (1.84 to 2.7 ps) and 600-MHz harmonic solitons are achieved in the experiment. The result proves that this kind of photonics device has good applications in ultrafast lasers, high-performance sensors, fiber optical communications, etc., which can help expand the prospect of combining 3D materials with novel fiber for ultrafast optics device technology.
Ultrafast Science
2023, 3(1): 0006
作者单位
摘要
1 太原理工大学 电子信息与光学工程学院, 山西 晋中 030600
2 太原理工大学 电气与动力工程学院, 太原 030000
3 中国电子科技集团公司第三十三研究所, 太原 030000
针对红外图像细节分辨率不高、目标边缘模糊等,提出一种基于改进生成对抗网络的红外图像增强算法。首先,基于编码解码网络U-Net构建生成器,优化U-Net跳跃连接方式,融合全局上下文模块,实现全局和局部特征的上下文建模; 然后,基于胶囊网络构建鉴别器,结合Res2Net改进胶囊网络结构,并对胶囊网络全连接层进行反卷积重构,实现多尺度图像特征提取,减少模型参数冗余。实验表明,与当前主流算法相比,该算法能有效突出细节信息、抑制噪声,提高图像分辨率和视觉效果。
深度学习 红外图像增强 生成对抗网络 胶囊网络 deep learning infrared image enhancement generative adversarial network capsule networks U-Net U-Net 
半导体光电
2023, 44(5): 782
刘洋 1,2,3朱香平 1,2,3靳川 1,2,3张笑墨 1,2,3赵卫 1,2,3,*
作者单位
摘要
1 中国科学院西安光学精密机械研究所,西安 710119
2 瞬态光学与光子技术国家重点实验室,西安 710119
3 中国科学院大学,北京 100049
采用钛蓝宝石飞秒激光加工系统在融石英表面诱导表面周期性微纳结构,研究了激光诱导表面周期结构的形成过程以及激光能量密度、脉冲数、光斑大小和脉冲的空间间隔对融石英表面激光诱导表面周期结构的形貌的影响。实验结果表明,飞秒激光在融石英表面可以诱导出周期性的亚波长结构,主要以垂直于激光偏振方向的光栅状结构为主,其周期在百纳米量级且具有更好的可复现性。在激光光斑控制在1 μm附近时,所得到的形貌具有较高的规则性。根据实验结果设计了聚焦高斯光斑低通量的加工方式。所制备的光栅结构具有200~300 nm的周期,平均深度约为300 nm。
飞秒激光加工 表面形貌 亚波长结构 融石英 周期性结构 Femtosecond laser processing Surface morphology Subwavelength structures Fused silica Periodic structure 
光子学报
2023, 52(7): 0752307
李继超 1,2朱香平 1,2李相鑫 3胡景鹏 3[ ... ]赵卫 1,2,*
作者单位
摘要
1 中国科学院西安光学精密研究所 瞬态光学与光子技术国家重点实验室,西安 710119
2 中国科学院大学,北京 100049
3 西安中科原子精密制造科技有限公司,西安 710110
基于原子层沉积技术提出了一种TiO2∶Al2O3纳米复合薄膜作为微通道板导电层材料。根据微通道板的规格参数以及体电阻要求,推导出微通道板导电层薄膜的方块电阻范围为1.73×1013~5.20×1013 Ω/□;研究了TiO2循环百分比与TiO2∶Al2O3纳米复合薄膜方块电阻之间的关系,发现当TiO2循环百分比在30.27%~37.06%时复合薄膜电阻率满足微通道板导电层要求;设计制备了20 nm的Al2O3过渡层以及100 nm的TiO2∶Al2O3纳米复合薄膜,测量厚度约为122 nm,且薄膜表面平整光滑,实现了微通道板微孔内壁TiO2∶Al2O3纳米复合薄膜导电层的制备。在1 000 V测试电压下,其体电阻为212.81 MΩ,增益为18 357,表明TiO2∶Al2O3纳米复合薄膜作为微通道板导电层具有可行性。
原子层沉积 微通道板 二氧化钛 氧化铝 导电层 Atomic layer deposition Microchannel plate TiO2 Al2O3 Conductive layer 
光子学报
2023, 52(6): 0631003
作者单位
摘要
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安 710119
2 中国科学院大学,北京 100049
3 西安中科原子精密制造科技有限公司,西安 710110
在250 ℃的低温下,以三甲基镓、四(二甲氨基)钛为前躯体源,O3为反应气体,采用热原子层沉积制备了Ti掺杂Ga2O3(TGO)薄膜。Ga2O3和TiO2的生长速率分别为0.037 nm/cycle和0.08 nm/cycle,TGO薄膜厚度低于理论计算值。X射线光电子能谱仪测试结果表明膜中Ti浓度随Ga2O3/TiO2循环比减少而增加,O 1s、Ga 2p和Ti 2p的峰位置向较低的结合能移动,这是因为Ti原子取代了Ga原子的某些位点引起了结合能降低,表明Ti元素成功掺杂到Ga2O3薄膜中。TiO2和Ga2O3的芯能级光谱分析表明薄膜中存有Ti4+和Ga3+离子。TGO薄膜的O 1s芯能级光谱中Ga-O键随着Ti-O键含量增加而下降,表明TGO薄膜中形成Ga2O3-TiO2复合材料。掠入射X射线衍射图中没有出现衍射峰,表明沉积的Ga2O3和TGO薄膜为非晶态。原子力显微镜观察到薄膜表面平整光滑,均方根粗糙度为0.377 nm,这得益于原子层沉积逐层生长的优势。TGO薄膜在可见光区表现出较高的透明度,对紫外光强烈吸收。随着Ti掺杂浓度的增加,TGO薄膜的折射率由于化学变化从1.75增加到1.99,紫外光区消光系数增大引起透过率减小,吸收边缘出现了红移,光学带隙从4.9 eV减小到4.3 eV。分光光度法和X射线光电子能谱法测定薄膜光学带隙所得的结果一致。
氧化镓薄膜 Ti掺杂Ga2O3薄膜 热原子层沉积 折射率 光学带隙 Gallium oxide thin film Ti-doped Ga2O3 thin films Thermal atomic layer deposition Refractive index Optical band gap 
光子学报
2023, 52(6): 0631002
Shang-Yu Ren 1,2†Wei-Qiang Wang 3,4†Yu-Jie Cheng 1,2Long Huang 3,4[ ... ]Xi-Feng Ren 1,2,5,***
Author Affiliations
Abstract
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
4 University of Chinese Academy of Sciences, Beijing, 100049, China
5 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
The dense quantum entanglement distribution is the basis for practical quantum communication, quantum networks and distributed quantum computation. To make entanglement distribution processes stable enough for practical and large-scale applications, it is necessary to perform them with the integrated pattern. Here, we first integrate a dense wavelength-division demultiplexing system and unbalanced Mach-Zehnder interferometers on one large-scale photonic chip and demonstrate the multi-channel wavelength multiplexing entanglement distribution among distributed photonic chips. Specifically, we use one chip as a sender to produce high-performance and wideband quantum photon pairs, which are then sent to two receiver chips through 1-km standard optical fibers. The receiver chip includes a dense wavelength-division demultiplexing system and unbalanced Mach-Zehnder interferometers and realizes multi-wavelength-channel energy-time entanglement generation and analysis. High quantum interference visibilities prove the effectiveness of the multi-chip system. Our work paves the way for practical entanglement-based quantum key distribution and quantum networks.
PhotoniX
2023, 4(1): 12
Yang Wang 1,2†Weiqiang Wang 1,5,*†Zhizhou Lu 3†Xinyu Wang 1,2[ ... ]Wenfu Zhang 1,2,6,*
Author Affiliations
Abstract
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Chongqing United Microelectronics Center (CUMEC), Chongqing 401332, China
4 Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
5 e-mail: wwq@opt.ac.cn
6 e-mail: wfuzhang@opt.ac.cn
A high-quality optical microcavity can enhance optical nonlinear effects by resonant recirculation, which provides a reliable platform for nonlinear optics research. When a soliton microcomb and a probe optical field are coexisting in a micro-resonator, a concomitant microcomb (CMC) induced by cross-phase modulation (XPM) will be formed synchronously. Here, we characterize the CMC comprehensively in a micro-resonator through theory, numerical simulation, and experimental verification. It is found that the CMCs spectra are modulated due to resonant radiation (RR) resulting from the interaction of dispersion and XPM effects. The group velocity dispersion induces symmetric RRs on the CMC, which leads to a symmetric spectral envelope and a dual-peak pulse in frequency and temporal domains, respectively, while the group velocity mismatch breaks the symmetry of RRs and leads to asymmetric spectral and temporal profiles. When the group velocity is linearly varying with frequency, two RR frequencies are hyperbolically distributed about the pump, and the probe light acts as one of the asymptotic lines. Our results enrich the CMC dynamics and guide microcomb design and applications such as spectral extension and dark pulse generation.
Photonics Research
2023, 11(6): 1075

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!